p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C42.77C23, C22.75C25, C23.35C24, C24.619C23, C22⋊12- 1+4, Q8○C22≀C2, (D4×Q8)⋊15C2, (C2×Q8)⋊40D4, C4⋊Q8⋊29C22, Q8.57(C2×D4), Q8⋊5D4⋊12C2, (C2×C4).69C24, (C4×Q8)⋊35C22, (Q8×C23)⋊12C2, C2.27(D4×C23), C4⋊C4.482C23, C4.116(C22×D4), C22⋊Q8⋊23C22, (C4×D4).229C22, (C2×D4).464C23, C4.4D4⋊21C22, C22⋊C4.16C23, (C2×2- 1+4)⋊5C2, (C2×Q8).440C23, (C22×Q8)⋊29C22, C22.50(C22×D4), C22.19C24⋊22C2, C22≀C2.35C22, C4⋊D4.223C22, (C23×C4).603C22, C2.18(C2×2- 1+4), (C22×C4).1206C23, C42⋊C2.223C22, C23.38C23⋊19C2, C23.32C23⋊11C2, C22.D4.29C22, (C2×Q8)○C22≀C2, (C2×C4).664(C2×D4), (C2×C4○D4)⋊23C22, SmallGroup(128,2218)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.75C25
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=g2=1, d2=f2=a, ab=ba, dcd-1=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1068 in 746 conjugacy classes, 432 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C23×C4, C22×Q8, C22×Q8, C22×Q8, C2×C4○D4, 2- 1+4, C23.32C23, C22.19C24, C23.38C23, Q8⋊5D4, D4×Q8, Q8×C23, C2×2- 1+4, C22.75C25
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2- 1+4, C25, D4×C23, C2×2- 1+4, C22.75C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 15)(2 16)(3 13)(4 14)(5 19)(6 20)(7 17)(8 18)(9 23)(10 24)(11 21)(12 22)(25 29)(26 30)(27 31)(28 32)
(1 25)(2 28)(3 27)(4 26)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(13 31)(14 30)(15 29)(16 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 15)(2 16)(3 13)(4 14)(5 19)(6 20)(7 17)(8 18)
(1 5 3 7)(2 8 4 6)(9 32 11 30)(10 31 12 29)(13 17 15 19)(14 20 16 18)(21 26 23 28)(22 25 24 27)
(1 15)(2 16)(3 13)(4 14)(5 19)(6 20)(7 17)(8 18)(9 21)(10 22)(11 23)(12 24)(25 31)(26 32)(27 29)(28 30)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,23)(10,24)(11,21)(12,22)(25,29)(26,30)(27,31)(28,32), (1,25)(2,28)(3,27)(4,26)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18), (1,5,3,7)(2,8,4,6)(9,32,11,30)(10,31,12,29)(13,17,15,19)(14,20,16,18)(21,26,23,28)(22,25,24,27), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,21)(10,22)(11,23)(12,24)(25,31)(26,32)(27,29)(28,30)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,23)(10,24)(11,21)(12,22)(25,29)(26,30)(27,31)(28,32), (1,25)(2,28)(3,27)(4,26)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18), (1,5,3,7)(2,8,4,6)(9,32,11,30)(10,31,12,29)(13,17,15,19)(14,20,16,18)(21,26,23,28)(22,25,24,27), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,21)(10,22)(11,23)(12,24)(25,31)(26,32)(27,29)(28,30) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,15),(2,16),(3,13),(4,14),(5,19),(6,20),(7,17),(8,18),(9,23),(10,24),(11,21),(12,22),(25,29),(26,30),(27,31),(28,32)], [(1,25),(2,28),(3,27),(4,26),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(13,31),(14,30),(15,29),(16,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,15),(2,16),(3,13),(4,14),(5,19),(6,20),(7,17),(8,18)], [(1,5,3,7),(2,8,4,6),(9,32,11,30),(10,31,12,29),(13,17,15,19),(14,20,16,18),(21,26,23,28),(22,25,24,27)], [(1,15),(2,16),(3,13),(4,14),(5,19),(6,20),(7,17),(8,18),(9,21),(10,22),(11,23),(12,24),(25,31),(26,32),(27,29),(28,30)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4L | 4M | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | 2- 1+4 |
kernel | C22.75C25 | C23.32C23 | C22.19C24 | C23.38C23 | Q8⋊5D4 | D4×Q8 | Q8×C23 | C2×2- 1+4 | C2×Q8 | C22 |
# reps | 1 | 1 | 6 | 6 | 8 | 8 | 1 | 1 | 8 | 4 |
Matrix representation of C22.75C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 3 | 3 | 1 | 3 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 3 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 1 | 2 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 2 | 2 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 1 | 3 |
0 | 0 | 0 | 3 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 2 | 2 | 0 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,3,1,0,0,0,0,3,0,4,0,0,1,1,0,3,0,0,0,3,0,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,1,0,0,0,0,2,2,0,0,0,0,0,3],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,2,0,0,0,4,0,2,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,3,0,0,0,1,0,3,3,0,0,0,0,1,1,0,0,0,0,3,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,2,0,0,0,4,0,2,0,0,0,0,1,0,0,0,0,0,0,1] >;
C22.75C25 in GAP, Magma, Sage, TeX
C_2^2._{75}C_2^5
% in TeX
G:=Group("C2^2.75C2^5");
// GroupNames label
G:=SmallGroup(128,2218);
// by ID
G=gap.SmallGroup(128,2218);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,570,136,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=g^2=1,d^2=f^2=a,a*b=b*a,d*c*d^-1=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations